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Electrokinetic transport in fluidic channels facilitates
control and separation of ionic species. In nanometer-
scale electrokinetic systems, the electric double layer
thickness is comparable to characteristic channel dimen-
sions, and this results in nonuniform velocity profiles and
strong electric fields transverse to the flow. In such
channels, streamwise and transverse electromigration
fluxes contribute to the separation and dispersion of
analyte ions. In this paper, we report on analytical and
numerical models for nanochannel electrophoretic trans-
port and separation of neutral and charged analytes. We
present continuum-based theoretical studies in nanoscale
channels with characteristic depths on the order of the
Debye length. Our model yields analytical expressions for
electroosmotic flow, species transport velocity, stream-
wise-transverse concentration field distribution, and ratio
of apparent electrophoretic mobility for a nanochannel to
(standard) ion mobility. The model demonstrates that the
effective mobility governing electrophoretic transport of
charged species in nanochannels depends not only on
electrolyte mobility values but also on { potential, ion
valence, and background electrolyte concentration. We
also present a method we term electrokinetic separation
by ion valence (EKSIV) whereby both ion valence and ion
mobility may be determined independently from a com-
parison of micro- and nanoscale transport measurements.
In the second of this two-paper series, we present experi-
mental validation of our models.

The advent of well-defined nanoscale fluidic (nanofluidic)
channel systems has spurred both speculation and experimenta-
tion into their possible applications in the analysis of chemical
and biological species.!=® The distinct physical regimes of nano-
fluidic channel systems offer interesting possibilities for new
functionality, including separation and analysis modalities. An
effective technique for pumping liquids in such systems is
electroosmotic flow. Electroosmotic flow is generated by electric
body forces within an electric double layer (EDL) that spontane-
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ously forms at solid—liquid interfaces* and whose dimensions scale
as the Debye length of the electrolyte.” The counterions of the
EDL shield the wall charge within a region that scales with Debye
length. In nanoscale channel systems, channel dimensions are of
the order of the Debye length, transverse electromigration plays
a critical role in determining ion distributions, and a highly
nonuniform velocity profile is established.6-10

Analytical studies of potential distributions and electrokinetic
transport within long thin channels with significant EDL thick-
nesses date back at least several decades.*®?? Since the EDL
thickness of typical aqueous electrolytes typically ranges from 1
nm to a theoretical maximum of ~1 um,? fluidic systems with
finite and overlapping double layers can be referred to as
nanoscale electrokinetic systems. Burgeen and Nackache® devel-
oped theory for electrokinetic flow in capillary slits with finite
double layers and predicted a high degree of flow retardation in
channel flows having a large Debye length-to-channel height ratio.
Their work examines systems with both low and high nondimen-
sional zeta potentials, {* = ( ze/kT, where ¢ is zeta potential and
kT/ze is the thermal voltage.? The work of Burgeen and Nakache
is well complemented by the work of Levine and co-workers.”?
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Collectively these seminal papers are limited to liquid velocity
fields and net current transport and do not address the transport
of individual, charged solute species over long distances (i.e.,
electrophoresis). Other, more recent examples of electrokinetic
flow theory development include work on combined pressure-
driven flow and (streamwise) electrophoretic ion motion, the
effects of adsorption/desorption dynamics on electrophoresis, 524
and the dispersion dynamics of neutral solutes in electrokinetic
nanochannels.!718 Although a few of these studies investigate the
migration of individual species, 415171824 none of them address
the role of coupling between transverse and streamwise elec-
tromigration fluxes and the effect of this coupling on electro-
phoresis and analyte dispersion. Also, most of the studies are
restricted to the assumption of low ¢ potential.14.15.17.24

There are a few recent experimental studies of molecular
transport through planar, shallow nanochannels.!25-31 Shu et al.3!
fabricated nanochannels for the application of stretching and
studying the dynamics of 103-kbase T5 phage DNA. Petersen et
al.2® fabricated nanochannels for DNA separation and demon-
strated a separation between strand lengths of 100 and 1000 base
pairs in a 320-nm-deep channel. Stein et al.* performed experi-
ments in nanochannels to quantify the effects of surface charge
on net ion transport. The latter study measured total ion current
as a function of bulk conductivity (i.e., electrolyte conductivity
measured outside of channel) in 70-nm and 1.015-um channels
with Ap ranging from 0.3 to 100 nm. Pu et al.26 qualitatively
described an ion depletion effect at the interface between nano-
and microchannels. Image intensity data were recorded for 60-
nm-deep channels with electrolyte concentrations of 70 uM, and
ion depletion was characterized with 30 uM fluorescein in
unbuffered solutions. Although a few of these experimental studies
examined the effects of individual species,?62832 none addressed
electrophoretic transport of individual charged species and its
coupling with transverse electromigrative fluxes.

Table 1 summarizes typical examples of theoretical and
experimental studies of electrokinetic flow in systems with a finite
EDL. We use symbols to summarize the content of each paper.
For the theoretical work, they are as follows: # are studies of
liquid velocity fields; £* > 1 denotes theory with a validity
extending in the high ¢ potential regime; N > 1 denotes
investigations of distribution of multiple ions in the EDL; s are
studies of surface conductivity effects;? ¢; denotes studies of the
transport of individual neutral species; and the symbol z¢; is used
to denote transport of charged species. For the experimental work,
they are as follows: I denotes measurements of total ion current;
u are experimental measurements of liquid transport; and ¢; are
measurements of the transport of individual (charged or un-
charged) species.
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Table 1. Theoretical and Experimental Nanochannel
Electrokinetic Studies

reference theory experiments
Burgeen and Nakache® c*>1,u
Rice and Whitehead” u
Levine et al.8 *>1u
Qiao and Aluru?? t*>1,N>1,u,«s
Griffiths and Nilson!® &> 1, u, ¢
Martin et al.?4 Ks, Ci
Datta nd McEldoon!® u, ¢
Griffiths and Nilson!” u, ci
Daiguiji et al.13 £*>1,k5, N> 1
Datta and Kotamurthi!4 u, c;
Stein et al.30 ks L u
Guo et al.32 u, c; G
Pu et al.26 N>1, ¢ I ¢
Fang et al.3 ¢i G
Peterson et al.28 u, ¢ u, G
current work u,C* > 1, z¢;
Pennathur and Santiago® u, I, c;i

In this paper, we present theory valid for electrokinetic
transport in nanometer-scale channels. We study electrophoretic
transport of both charged and neutral species in long thin
nanochannels and show that both transverse electromigration and
nonuniform velocities have a significant effect on both net
streamwise transport and dispersion. We present continuum
theory valid for the finite {* regime and Debye lengths on the
order of the channel height. We also present a method we term
electrokinetic separation by ion valence (EKSIV) that can be used
to determine both ion mobility and valence of analyte ions from
a comparison of micro- and nanoscale transport measurements.
In the second of this two-paper series,®® we present an experi-
mental validation of the model.

CONTINUUM THEORY MODEL
Liquid Transport Simulations. We first summarize the

governing equations for transport of liquids in channel flows where
Ap is on the order of at least one characteristic channel dimension.
We begin with the classical equations describing electrokinetic
flows, as presented by Levich® and Probstein.> Assuming fully
developed flow and negligible flow to pressure gradients, the
continuum equations are

Va=0; 0=uVi+ p VP 1

N
—Z“zienC exp(—(ze®/kT))
=1

Ve = ©
€

where 7 is the velocity of the liquid, pg is the charge density, u is
the viscosity, € is the permittivity, e is the elementary charge, k is
the Boltzmann constant, T is temperature, z is valence number,
and #, is the number density (m~3) in the center of the channel
for a channel with nonoverlapped EDLs. Equations 1 are the
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equations of motion for an incompressible Newtonian fluid of
uniform viscosity subject to an electrostatic body force. Equation
2 is the Poisson—Boltzmann equation relating electric potential
and electrolyte ion distributions in the channel.

Following Probstein,> we decompose the electrical potential
in the system as follows (in Cartesian coordinates):

® =) + Y02 @)

where ® is the total potential in the channel, ¢ is the external
potential imposed by end-channel electrodes, and W is the
potential field associated with the charges of the EDL.

Assuming an electric body force term induced by the charges
of a uniform ¢ potential, eq 1 can be integrated to yield

S-re

u (y,Z) = C

@

where u is the streamwise component of velocity, £ is the
streamwise electric field induced by the end-channel electrodes,
x is the streamwise direction, and y and z are respectively the
transverse and spanwise directions. We approximate the net
charge density distribution as being only a function of the EDL
potential, v, described by egs 2. Note that area-averaged velocities,
(u), are of the form

S e o

We solved these equations numerically for finite ¢* using a
commercially available finite element solver (FEMLAB, Comsol
Corp., Los Angeles, CA) with the incompressible Navier—Stokes
and dc conductive media application modules. The three-
dimensional (3D) channels geometries (and associated 2D flow
simulations) incorporated a 20:1 width-to-depth aspect ratio
consistent with our experiments.? The viscosity and permittivity
of the dilute electrolyte are those of water, 9.77 x 10~* kg/ms
and 6.93 x 10710 C%/J-M, respectively.’’” Note that we assume
viscosity and permittivity are uniform and constant within the
double layer, although there may be variability of both these
parameters in the EDL, as discussed in detail by Lyklema.’® We
consider electric fields, ¢ potentials, and Debye length-to-channel
height ratios consistent with experiments,? where Debye length
is defined as

N
= (kT/€"Y z/n) " (6)
=1

For finite * values, we also used the elliptic integral formulation
of Burgeen and Nakache.® The 1D semianalytical solutions for
symmetric electrolytes match the 2D numerical flow simulations
at the spanwise midplane (z = 0) (also for the symmetric
electrolyte case) within 1.5% for Debye length-to-channel height
ratios (Ap/h) between 0 and 0.5. The 1D flow solution is sufficient
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York, 1973; Vol. 3, pp 420—423.
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for symmetric analytes in 20:1 aspect ratio channels with finite
double layers. For the remainder of this paper, we shall estimate
the velocity vector field (#) and potential field (1) as functions of
only the transverse dimension (y) in the case of high aspect ratio
channels (i.e., we treat the flow as between large parallel plates).

Note that for low {* values, the analytical solution for # is
derived simply using Debye—Huckel theory® as

eEt(, A1 exp(/ip) + A, exp(=y/Ap)
u \L 3 ) @

u@y) =

where

1 —exp@h/Ap)
exp(h/Ap) — exp(—=3h/Ap)

A =8

Ay, =Cexp(—h/Ap) — A, exp(—2h/Ap)

Last, we note that area-averaged (bulk) velocities are a function
of the nondimensional velocity profile (as determined by ¢ *).18
Measurable area-averaged velocities therefore hold information
regarding the shape of the EDL.

Regular Perturbation Theory. Considering a system of three
fully ionized ions, A, B, and S, where ions A and B represent the
influence of all background electrolytes and S is the analyte ion.
Ion transport is governed by the following electromigration—
diffusion—advection equation.?

ac;

—+ch —+vaV(cV<I>)+DVc

o7 i=ABS ©

where ¢; refers to the concentration of the ith ionic species, (e.g.,
¢s refers to concentration of sample ion S), F is Faraday’s constant,
and D is the (isotropic) molecular diffusion coefficient. v; is the
usual ion mobility of a species defined as a positive quantity equal
to uq/EFz;, where uq is the net velocity (i.e., relative to the local
liquid velocity) for an ion valance z; subject to an electric field E.
We follow the regular perturbation analysis of Bharadwaj and
Santiago® and find that the zeroth order equations show that
background electrolyte ions follow binary electrolyte dynamics
and are unaffected by the convection, diffusion, and electromi-
gration of the relatively low concentration analyte (sample
concentration should be lower than about one-tenth of the
background electrolyte ion concentration). Following this proce-
dure, the first-order low concentration sample analyte ion distribu-
tion is

acs' ~0 1_ < 1o 2 1

— + 7" Vi = 2gvsFV, (e V") + DV 9

From eq 9, we see that the sample ion concentration is a first-
order concentration field that responds as a passive (although
charged and diffusive) scalar to the velocity and electric fields
determined by the zero-order background electrolyte ions. For
the remainder of this paper, we will focus on the behavior of this
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first-order sample ion concentration field and will, for brevity, omit
the superscript 1 from subsequent equations.

Time Scale Analysis. We now use a straightforward time scale
argument to derive a transverse concentration distribution at any
streamwise location x. For two-dimensional (xy) concentration
fields in a one-dimensional flow parallel to the x-axis, eq 9 can be
rewritten as follows:

acg
o @+ szSFE)

2
dy s d%y (8 cg 0 cs)

2 F LS 4y o Feg SL 4D 10

VB gy Gy T VS S 8x2 > (10)

where cs is the concentration of the species ion with an electromi-
gration determined by the analyte ion mobility, vs. The electric
potential has been expanded as

vol = 47 | dw*
dy’

dz/)_,
e —-E7+ 11

where the applied electric field (E,) is uniform and constant. We
now apply a normalization of the form

sol 2B ax ey Ayt _dy L
! ty ¢ cs, o oy J Ay Ayt dy /AD
(12)

where f is the characteristic time scale of an electrophoretic
separation, cs, is a characteristic sample concentration, and oy is
the characteristic streamwise length of the sample plug (e.g., the
width of an analyte band in an electrophoretic separation). In the
cases of interest, Ap is of order 4. Further, the maximum velocity
(and the scale #9) is determined solely by the effects of viscous
and electrostatic forces,* so the characteristic velocity #° is simply
uys = €E¢/u, the area-averaged velocity expected in a thin EDL
flow.>
Equation 10 becomes

Ap’ ger | uns(L+P) Ap” gex
Dto ot* D (o ax
* Gk * A 2.2 . 2
C*%%‘FC*%C*‘FLB_C dc (13)

0_02 8x~k2 ay*Z

where [ is the ratio of ion mobility to the Helmholtz—Smolu-
chowski EOF velocity, uvszsF/e¢. Here we have used the Nernst—
Einstein relation, D = vsRT, so vszsFC/D = zs¢{/kT. The relevant
time scales are tyg = A%p/D, ten = A%p/(E*D), and tyq, = 0o/ Uxs.
These scales describe respectively the characteristic times of
diffusion in the transverse direction, electromigration in the
transverse direction, and the time for the analyte band to advect
(i.e., due to area-averaged liquid velocity only) along the stream-
wise direction a distance on the order of its width.

The characteristic length scales of the problem are Ap = 10
nm and o = 10 um. Characteristic values of other key parameters

(40) Santiago, J. Anal. Chem. 2001, 73, 2353—2365.

are D =1 x 1071 m?/s, E = 100 V/cm, and vszsF =1 x 1078
m?/(V-s). For typical nanoscale systems, ¢ * is of order of unity.2?
Using these values, we find that ¢g¢ and £, are on the order 1 x
1076 s and that both #g; and f., are much smaller than ¢,q,, which
is on the order 0.1 s. In terms of the parameters of eq 13, £* is of
order unity, while both Ap%/0¢? and uys(1 + B)Ap%/ (Do) are much
smaller than unity. We can therefore assume that transverse
electromigration (first and second terms on the right-hand side
of eq 13) continuously balances transverse concentration gradients
(last term of eq 13). This leads to a quasi-steady equilibrium
between transverse electromigration and transverse diffusion
expressed as

2
a(. dy Fes@yyt)
Ogsz—(c —)—D— 14
S¢S ay S ay ayz ( )

Equation 13 (and therefore 14) is subject to the following boundary
conditions:

v0) —y.0)

cs(y) = ¢5. ()

at y=0

at y=0

where ¢s(x) above is the concentration of sample species at the
centerline of the channel and at some arbitrary streamwise
position x and . is the potential at the center of the channel
determined by the solutions to eqs 1 and 2.5 The transverse height
of the channel varies from y = —/ to & and eq 14 can be integrated
twice to yield

—z5e(y () — wc)) 15)

cs(ry) = cs exp( 0T

Here ¢s(x) can be related to the area-averaged concentration (cs)
at an any streamwise location by the following relation:

—w@@—w»

(es(y)) = s <exp( 2T (16)

where the operator ( ) represents a transverse (y-direction) depth-
averaged quantity, ( ) = 1/(2h) ' h,h() dy. Since we are estimating
the velocity field, #, and potential field, v, as functions of only
the transverse dimension, y, this operator also represents an area-
averaged quantity and will be referred to as such for the remainder
of the paper.

Analytical Solution for Charged Species Transport. In this
section, we derive closed-form analytical solutions to both the
transport and dispersion of charged species using the convective
diffusion equation. First, we substitute the transverse concentra-
tion distribution for arbitrary streamwise locations (eq 15) into
the full convective—diffusion—electromigration equation (eq 10),
to yield

Xp(—zse(w o - wc)) acs, N

kT ot
—25¢( (%) — P Fes,
exp(sk—T) (uHS - VSZSFEx) a—; =
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Note the first two terms on the left-hand side of eq 10 cancel the
last term on the right-hand side of eq 10, as dictated by the fast
dynamics of the equilibrium between transverse diffusion and
transverse electromigration

Next, we consider a shift of reference frame that will yield a
quasi-steady solution of the two-dimensional concentration field
in a formulation that is analogous to that originally made by
Taylor*! for quasi-steady dispersion of neutral solutes in pressure-
driven flows. Three important differences of the current case from
that of Taylor are as follows: both electroosmotic velocity profiles
and streamwise electromigration play a role in determining the
appropriate reference frame for the current problem; the reference
frame velocity in the current problem is at first unknown; and
the flux of solute along the transverse direction is here determined
by both diffusion and electromigration.

We define the velocity of the quasi-steady reference as the
observed velocity of the analyte, (ug) (i.e., the effective velocity of
the electrophoretic band with respect to the channel wall). We
then integrate eq 17 in y and to obtain area-averaged quantities.
Defining G = {exp(—zsey (%) /kT)), eq 17 becomes

G

Pes. —25e ) — v
8tS‘ + <exp( & 2T )(uHS — v FE, —

2
d CS,C

o’

> 8ZCSYC
(ug)) ™ = DG

(18)

Here the bracketed term multiplying the streamwise derivative
of centerline concentration is a constant. We recognize that eq
18 has the form of a simple one-dimensional diffusion problem
with a shift in reference frame given by a uniform, steady velocity.
The only value of (#s) for which the frame of reference moves
exactly with the electrophoretic band can be derived by setting
the bracketed term in eq 18 to zero to yield

_€EC —25e(y () — ) () >
(u>——6 <exp 1- + vz FE
ST ( kT )( ¢ ) ¥s (19

Equation 19 defines the observed, area-averaged velocity of a
charged species in nanochannel electrokinetic flow. The expo-
nential term describes the transverse distribution of the sample
as determined by analyte valence, zs, and the transverse potential
distribution 1 (y) (whose shape is a function of ¢*). The product
of this exponential with (1 — v /{) captures the coupling between
transverse electromigration and diffusion with streamwise advec-
tion. Figure 1 shows a plot of (us) as a function of Ap/k for two
values of £* and sample ion valences, zs, of —1, =2, 0, 1, and 1.
To highlight the transverse electromigration/streamwise flow
coupling, we normalize {us) by first subtracting the electrophoretic
component, vszsFE, and then dividing by #ys. The figure shows

(41) Taylor, G. L. Proc. R. Soc. London, Ser. A 1953, 219, 186—203.
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Figure 1. Area-averaged, observable species velocity, (us), as a
function of Ap/h for {* < 1 (insert) and ¢ = 2 and for sample ion
valences, zs, of —1, —2, 0, 1, and 1. (us) is normalized by first
subtracting the electrophoretic component, vszsFE, and then dividing
by uns. The figure shows how positively charged analyte molecules
equilibrate close to the channel walls and experience lower liquid
velocities. Negative sample ions equilibrate toward the center of the
channel and are advected by the higher velocities near the center of
the channel.

how positively charged analyte molecules spend relatively more
time near the wall and experience lower liquid velocities. Negative
sample ions are repelled from the wall and advected by the higher
velocities near the center of the channel.

With the definition of (u#s) given by eq 19, eq 18 reduces to

2
Bcsyc 0 Cse

=T e

(20)

which, for an initial thin sample injection plug, can be solved
exactly to yield a Gaussian function in ¥ for ¢s.. Note that in our
case of interest, where % is order Ap, the effective dispersion
coefficient of the solute is just the molecular diffusion coefficient
D. That is, a quasi-steady equilibrium between transverse elec-
tromigration and diffusion dictates that advective dispersion
cannot, to first order, contribute to streamwise dispersion. Note
that the current derivation does not account for adsorption/
desorption dynamics, which may also contribute to dispersion.
Shifting back to the original reference frame, and substituting for
¢s using eq 15, we can solve for the final concentration distribu-
tion in a nanochannel:

) ny exp(—& — (us)t)z/ 4Dr)
sy = — X
SR JixDt

exp(—_zse(wk(yT) - 1’)C)) ©1)

where 7, is the number of moles of the analyte introduced in the
channel and (us) and 1 (y) are defined by eqs 19 and 2, respectively
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Figure 2. Comparison between analytical solution and numerical calculations of streamwise-transverse concentration fields for convective-
diffusion dynamics in nanometer-scale electrokinetic channels. Figure shows (a) a neutral species, (b) a species with a zs = 1 valence number,
and (c) a species with a zs = 1 valence number. The analytical concentration fields are shown in the first and third quadrants of each field plot,
while numerical results are shown in the second and fourth quadrants. All calculations are for a 50-nm-deep channel with a 6-nm Debye layer

thickness and ¢* = 2.1. Red regions indicate high solute concentration.

Note that for low ¢ potential magnitudes, the solution to eq 21 is
expressible in closed form:

nyexp(— @ — (ug) 1)%/4Df)

wh VAaxDt

exp( —25e(A; exp(y/. ;LD})e;_ A, exp(—y/Ap)) ) ©22)

Equations 19, 21, and 22 are presented in Appendix A for a
cylindrical nanochannel.

Validation of Analytical Solution with Simulations. We here
present a validation of our analytical solution with a numerical
calculation. We consider the coupled advection and diffusion of a
solute band that is initially thin compared to the channel dimen-
sion and uniformly distributed in y. We chose an integration time
step for this calculation of order 0.1 A%p/D. The numerical
calculations can be summarized in three brief descriptions. First,
we find that the solute relaxes to a transverse distribution
determined by the exact analytical solution within a time scale of
order A2p/D, as predicted by the time scale argument presented
earlier. Second, over electrophoretic migration times of order
10042p/D and greater, the peak concentration of the electro-
phoretic band moves at a velocity determined by eq 19. In all
cases, velocities predicted by eq 19 matched those of the 2D
unsteady calculations within 6%. Third, over electrophoretic
migration times of order A%p/D and greater, the simulated
electrophoretic band reaches an unsteady, 2D distribution well
approximated by eq 21, as shown in Figure 2 and discussed below.

Figure 2 shows a comparison between our analytical solution
and numerical calculations for both neutral and charged analytes.
Streamwise-transverse concentration distributions for neutral,

positively charged, and negatively charged sample species are
shown at an integration time of 100A2,/D. Note that the analytical
concentration fields are shown in the first and third quadrants of
each field, while the numerical results are shown in the second
and fourth quadrants. The solutions are calculated in channels
with a height of 50 nm, Ap/% of 0.25, and a sample species diffusion
coefficient, D, of 5 x 1071 m?/s. Since we are interested in the
regime of nonoverlapped EDLs, both numerical calculations and
analytical solutions are presented for the case where vy, is
negligible. The figure shows excellent agreement between the
analytical solution and numerical calculation for both the area-
averaged velocity and dispersion. The neutral species solution of
Figure 2a is consistent with the low Peclet number limit identified
by Griffiths and Nilson!” for neutral solutes in finite EDL
electrokinetic flows. In Figure 2b, the fluxes of electromigration
(away from the wall for a negative ion and negative wall charge)
and diffusion result in an equilibrium ion distribution where
negative ions are concentrated near the center of the channel and
experience a velocity higher than that of the area-averaged (bulk)
liquid velocity. The opposite is true of the positive analyte ions of
Figure 2c, which equilibrate near the wall and experience relatively
low liquid velocities. Parts b and ¢ of Figure 2 validate the accuracy
of the quasi-steady equilibrium formulation that leverages the fast
dynamics of transverse electromigration and diffusion in a
nanochannel. In all cases, numerical calculation values of the
unsteady, two-dimensional concentration fields are within 3% of
the analytical equation (using a simple, trapezoidal numerical
integration of y(3)). Note that the streamwise dispersion for
charged species is also consistent with pure streamwise diffusion,
o = (2D1)'/2, where o is variance of width of the sample plug.
Nanochannel Electropherogram Predictions. As a further
demonstration of the model, Figure 3 shows spatial electrophero-
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Figure 3. Simulated spatial electropherograms are shown for four
analytes separated at a field of 200 V/cm in a channel with {* = —2.
The sample analytes in this simulation have the following properties:
v1 =4 x 1074 mol-s/kg (z, = —1), v2 = 1.2 x 1074 mol-s/kg (z, = 1),
v3 =2 x 1074 mol-s/kg (zs = —2), and v4 = 4 x 10~* mol-s/kg (z; =
1). Species 1 and 3 have identical values of zsvs and so migrate at
the same rate at thin EDL conditions, Ap/h = 0.05 (a). At Ap/h = 0.4
(b), the coupling between transverse concentration distributions and
the nonuniform velocity field results in an optimal separation rate
between species 1 and 2. With relatively thick EDLs, Ap/h = 0.7 (c),
separation of all species is achieved but with lower resolution.

gram simulations (i.e., plots of area-averaged species concentration
versus axial distance at equal times after injection) for three
sample values of nondimensional Deybe length: Ap/k = 0.05, 0.4,
and 0.7. We assume a negative wall charged surface with {* =
—2 in all cases. The concentration distributions of each analyte is
obtained using eq 21 and plotted independently. Sample analyte
anions, species 1 and 3, have the same electrophoretic drift
velocity, zsFEvs, but valences of z; = —1 and z3 = —2. Analyte
cations 2 and 4 have equal valence, z; = z; = 1, but species 2 has
a lower ion mobility than species 4, v, < v4. Figure 3a shows an
electropherogram at thin EDL conditions. Here, species 1 and 3
are unresolved as expected (since z;v; = z3v3), while species 2
and 4 are resolved by their different mobilities. Figure 3b shows
results at Ap/k = 0.41, where the separation of species 1 and 3 is
most sensitive to ion valence. Here, the coupling between the
nonuniform velocity field and nonuniform concentrations in the
transverse direction results in clear resolution of all species. At
this condition, the order of elution of analytes 2 and 3 is reversed
from that of the other two cases. This is again a result of the
complex coupling between valence and ion mobility in a finite EDL
channel system. Figure 3c shows a separation for a relatively thick,
nonoptimal value of Ap/k = 0.7. Here, the effectiveness of
nanochannel separation decreases as sample analytes are distrib-
uted more uniformly over the cross section of the channel and
analyte transport is determined mostly by the area-averaged liquid
velocity. Also, at this thick EDL condition, («) is relatively low,
and so the observed species velocities of the analytes, (us), are
significantly lower than the corresponding velocities of Figure 3a
and b. These results demonstrate the efficacy of using nanochan-
nel electrophoretic separations to obtain new ion information. In
the next section, we present a method whereby comparisons of
micro- and nanoscale electrophoretic separations (e.g., Figure 3a
and b above) can be used to obtain both ion mobility and valence.

Effective Electrophoretic Mobility in a Nanochannel:
Electrokinetic Separation by Ion Valence. In this section, we
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Figure 4. Surface plots of effective electrophoretic mobility in a
nanochannel normalized by ion mobility as a function of Ap/h and 1/3
for (a) ¢*< 1 and (b) {*= 2. Surface plots of zs = —2, —1, 1, and 2
are shown for each case. The separation of (vs nano)/vs surfaces for
various values of sample valence, zs, demonstrates that electro-
phoresis experiments in nanochannels contain information of both
sample valence, zs, and sample ion mobility, vs. Note that, for
negative wall charge, positive analytes equilibrate to transverse
positions close to the wall and hence experience velocities lower than
the area-averaged liquid velocity. Hence, (us) is less than (u) for
positive ions and (vs nano)/vs IS negative.

solve for the effective electrophoretic mobility of a charged species
in nanochannel flow. The ratio of this effective electrophoretic
mobility to ion mobility results in a parameter convenient in
quantifying the changes of net streamwise electrophoretic flux
due solely to finite EDL effects. This ratio also allows us to
establish a method whereby both ion valence and mobility may
be determined independently from a comparison of micro- and
nanoscale transport results.

We first subtract the area-averaged liquid velocity, («), from
the observed analyte velocity, (ug), in a nanochannel. We then
divide this difference by the electric field and by zsF to define an
“apparent electrophoretic mobility” in a nanochannel: (vspano)
=((us) — (u))/zsFE. For a thin EDL channel, this effective mobility
reduces to just (Vspao) = vs, as expected. The ratio of (¥spano) to
s is then

<VS,nano> _ <MS> - <u> .
vs Uq a

) )

The minimum number of parameters that determine (vspano)/vs



are f, ¢*, Ap/h, and zs. {* and Ap/h determine the potential
distribution and therefore the shape of the liquid velocity profile.
B determines the relative importance of analyte advected by
electroosmotic flow and electrophoretic flux. zs determines the
distribution of the sample ion of interest in the potential field
determined by the background electrolyte ions.

Figure 4 shows surface plots of (v ano)/vs versus 1/ and Ap/
h. The figure is generated using constant values of {* <1 (Figure
4a) and ¢* = 2 (Figure 4b) and analyte valences, zs, of 1, 2, —1,
and —2. There are three important limits of the (vsuumo)/vs
parameter. First, at low Ap/h, the EDL is thin and thus the velocity
profile is uniform. In addition, in thin EDL, low Peclet number
flow, the species concentration distribution is uniform in the
transverse direction. Therefore, the coupling of the streamwise
velocity and transverse concentration distribution results in simple
area-averaged values for velocity, so (Vsnao)/vs = 1. Second,
(Vs nano)/ vs approaches unity for high Ap/k. In this limit, the sample
analyte is distributed approximately uniformly over the cross
section of the channel and the analyte is simply advected at the
area-averaged liquid velocity. Third, at large 5, streamwise
electromigration velocities are large relative to electro-
osmotic velocities, thereby resulting in (vs o)/ vs ratios close to
unity.

The strongest coupling between finite EDL physics and
streamwise transport occurs for intermediate values of Ap/k and
low values of 3. At low f3, the coupling between the nonuniform
flow field and the nonuniform transverse potential (and associated
transverse concentration profiles) in the nanochannel govern the
transport of analytes. As /3 increases, the ion mobility of the analyte
becomes progressively more important until it dominates axial
analyte transport (i.e., until it dominates effective electrophoretic
mobility). For an intermediate range of Ap/#, there is a nonuniform
velocity profile covering large portions of the channel cross
section. In this regime, transverse electromigration (determined
by both v (y)/¢ and zs) plays a strong role in determining which
streamwise velocities are sampled by the analyte. Highly positive
analytes (e.g., zs = 2 or greater) reach equilibrium very near the
wall and are retarded by the low velocities near the no-slip wall
region.

Note the strong asymmetry between positive and negative
analytes in the {* = 2 case as compared to the {* < 1 case. This
asymmetry at high ¢* is shown clearly in Figure 2 and Figure
4b, and is a result of the nonlinear nature of the EDL. At high ¢*,
the attraction of counterions is more important in determining
the EDL potential than the repulsion of co-ions.* For the {* <1
case of Figure 4a, we see that the solutions for (vguume)/vs are
nearly symmetric for both positive and negative ions.

The separation of (vguuo)/vs surfaces for different values of
sample valence, zs, demonstrates an important opportunity offered
by nanochannel electrokinetic flows. Electrophoresis experiments
in nanochannels contain information regarding both sample
valence, zs, and sample ion mobility, vs. A nanochannel measure-
ment can yield streamwise transport dynamics, particularly for
an optimal coupling between EDL transverse electromigration to
streamwise transport. For the parameters of Figure 4b, the
strongest such coupling occurs between 0.3 < Ap/kh < 0.5 and
for low values of 3. In this regime, there are significant differences
between (vsnano)/vs values of different analyte valences. For

example, at Ap/h = 04, ¢* = 2, and B = 0.6 (a condition
addressable experimentally®), (vs o)/ vs changes by 15% between
25 = —1to —2 analytes and by 23.5% between zs = 1 and 2 analytes.
Given information of ion mobility (i.e., the observable quantity
2svs), a measurement of (vgnuo) yields information of species
valence.

We define here EKSIV as a process of measuring species
velocity in both a microchannel and a nanochannel to yield both
ion mobility and valence information. The proposed method is,
briefly, as follows: (1) A technique such as current monitoring*
or tracking of a neutral marker is used to obtain a measurement
of electroosmotic mobility in a thin-EDL microchannel device; (2)
the product of species mobility and valence, zyvs, is determined
in the same microchannel for a charged analyte (using an
empirical value of #ys to subtract out area-averaged liquid velocity
from observed analyte velocity; (3) observable species velocity,
(us), and bulk liquid velocity, (u#), are measured in a nanochannel
system of known ¢*, f3, and Ap/h (for ease of modeling and
accuracy, this measurement should be performed under nonover-
lapped EDL conditions) and used to determine (vsnaop; (4) the
model described here is used to generate predictions of the ratio
(Vsnanoy/vs; and (5) model predictions are compared to data
normalized as per eq 23 to determine the most probable value of
valence for each analyte. To improve accuracy, a background
electrolyte buffer concentration should be chosen to yield a Ap/k
between 0.3 and 0.5 (i.e., conditions yielding more sensitive
dependence of (Vs nano)/vs on valence as shown in Figure 4), and
B should be minimized to ensure a strong coupling between
streamwise and transverse electromigration.

The values of £*, 8, and Ap/h can be appropriately tuned to
yield optimal conditions for EKSIV. For example, electroosmotic
flow in the nanochannel should not be suppressed, and in many
cases, high pH values will allow larger values £ * and lower values
of 8. Ap/h can be modified using various channel depths or (more
conveniently) various values of background electrolyte concentra-
tion. Once valence and ion mobility are known, measurements
can be used to establish a map of mobility versus valence for each
analyte. As these quantities are independent but nonorthogonal
parameters, we refer to such a plot as an EKSIV map.

Last, we note that the parameters f and * all depend on the
dimensional value of zeta potential, . In general, ¢ is a function
of local ionic concentration and pH. In our experiments,® total
ion concentration is conveniently varied to effect variations of Ap/%
(along with limited variations of /). We are therefore forced to
simultaneously vary zeta potential as we vary Ap/h. We can assume
a convenient power law for the concentration dependence of zeta
potential of the form:*® ¢ = ac®, where ¢ is the ionic species sum,
¢ ==Y zc;, and a and b are empirical constants. Our measure-
ments® yield empirical values of @ = 0.298 and b = —0.245. Figure
5 shows example numerical predictions of apparent electrophoretic
mobility ratio, (vsnano)/vs, as a function of Ap/k with Ap/h with &
= (.288¢792% (the boundary condition required for ¥ (y)) and for
channel heights of 40, 80, 100, and 120 nm (our experiments are
performed in 40- and 100-nm channel depths). Note the coupling
between concentration and ¢ potential results in multiple solutions
for each Ap/h as changing Ap also changes ¢ potential. In the
second of this two-part paper series,* we will present the results

(42) Sze, A. J. Colloid Interface Sci. 2003, 261, 402—410.
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Figure 5. Apparent electrophoretic mobility ratio, (Vs nano)/vs, as a
function of Ap/h with 1p and ¢ coupled by the relation { = 0.288¢ 0254,
Numerical calculations are presented for 40-, 80-, 100-, and 120-nm
channels. Values of mobility for the parameter 5 are taken from the
experimentally determined values of mobility for bodipy (zs = —1)
and carboxyl fluorescein (zs = —2).

of an experimental parametric study as well as a validation of the
current model. This type of theoretical development and com-
parison with experiments yields insight into the applicability of
continuum theory and structure of EDLs in nanoscale electroki-
netic systems.

CONCLUSIONS
Nanofluidic systems provide new functionalities for the ma-

nipulation of chemical species. In such systems, EDL thicknesses
are comparable to characteristic channel dimensions. This finite
thickness causes the velocity profile to be highly nonuniform and
results in a decrease in area-averaged electroosmotic velocity. In
these channels, transverse electromigration and diffusion fluxes
are coupled to the streamwise transport of analyte ions. Prior
theoretical studies have not addressed this coupling.

We have developed analytical and numerical models for
electrokinetic transport in nanometer-scale fluidic channels. The
model is valid for the transport of individual charged and
uncharged species over long distances (i.e., electrophoresis) and
in conditions of both low and high ¢ potential. The model
considers the addition of dilute analyte sample species to an
electrokinetic flow where Ap is on the order of #. We derive an
analytical solution to both the area-averaged (observed) species
velocity and the unsteady, streamwise-transverse concentration
distributions for both charged and uncharged species. When
charged species are introduced into a nanoscale channel with finite
double layers, positively charged analyte molecules spend rela-
tively more time near a negatively charged wall and experience
lower liquid velocities. Negative sample ions have equilibrium
concentration distributions that are more tightly focused near the
center of the channel. Transverse electromigration and associated
transverse concentration gradients therefore play a critical role
in the net streamwise transport of a charged solute in electroki-
netic nanochannel flow. The model demonstrates that electro-
phoretic separation in nanochannels depends on sample ion
valence, sample ion mobility, ¢ potential, and the Debye length
of the background electrolyte. Finally, we propose a new method
we term electrokinetic separation by ion valence (EKSIV), where
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both valence and mobility of an analyte can be determined from
a comparison of microchannel and nanochannel electrophoresis
experiments. In the second of this two-paper series, we will present
an experimental validation of the model as well as a demonstration
of EKSIV.
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GLOSSARY

a radius of cylindrical nanochannel (m)

¢ concentration of species 7 (mol)

c sum over all species concentrations, Zﬁ-\ilq (mol)
(c) area-averaged concentration (mol)

D molecular diffusion coefficient (m? s—1)

e elementary charge (C)

E electric field strengh (V m™1)

F Faraday’s constant (C mol™)

h transverse half-height for a rectangular cross-section
channel (m)

k Boltzmann’s constant (J K1)

Ne number density (m~3)

No number of moles (mol)

T temperature (K)

t time (s)

i liquid velocity field (m s71)

(u) area averaged (bulk) liquid velocity (m s™1)

4 species drift velocity, vszsFE (m s71)

ys Helmoltz—Smoluchowski velocity eCE/u

us observed species velocity (m s71)

(us) area-averaged observed species velocity (m s71)

w channel width (m)

z valence number

B ratio of ion drift velocity to Helmoltz—Smoluchowski
velocity, uvszsF/ et

€ permittivity (C2 J=! m~1)

Ks surface conductivity (S/m)

u dynamic viscosity (Pa s)

Vs ion mobility of species s (mol s kg™), uq/zsFE

(Vsnanoy  €lectrophoretic mobility in nanochannel, ((us)—(u))/
zsFE (mol s kg™)

Ap Debye length (m™)

e volumetric charge density (C m~3)

1) potential applied via end-channel electrodes (V)

P potential associated with wall charges (V)

o conductivity (S m™?)

D total electric potential (V)

¢ zeta potential (V)

c* nondimensional zeta potential, zeC/kT



Subscripts

A background electrolyte cation

B background electrolyte anion

c centerline

S sample ion

adv advection

cyl cylindrical

diff diffusion

em electromigration

HS Helmoltz—Smoulchowski

nano nanometer scale (implying finite electric double layers)

APPENDIX A: CYLINDRICAL GEOMETRY
NANOCHANNELS

The extension of the model to cylindrical coordinates is trivial.
Consider a cylindrical tube of radius @ with radial and streamwise
coordinates 7 and x, respectively. The area-averaged velocity of
the analyte is given by eq 4 with v (y,2) replaced by v (7). For low
¢ potential, the Debye—Huckel approximation yields a radial
velocity profile, u(7),” equal to —(eEC/u)[1 — Io(r/Ap)/Iy(@/Ap)],
where I, is the zero-order modified Bessel function of the first
kind. Following the derivation from our contiuum theory section,
we then integrate the balance between radial diffusion and radial
electromigration to yield an expression for the unsteady stream-
wise-radial concentration distribution, ¢s(7,), which has the same
form of eq 15 with the coordinate y replaced by . The closed
form analytical solution for the species velocity in a cylindrical
nanochannel, (s is then given by eq 19 (again with y replaced
by 7). For the cylindrical case, the area averaging operator is
understood to be () = 2/(wa?) [{()r dr.

Combining the results for a cylindrical geometry, the stream-
wise-radial concentration distribution is

ny exp(—u — (ug) 1)%/4Df)
E— X

na® 47Dt

csert) =

(@) — )
XP(T) @4

For low ¢ potential, this concentration distribution becomes

n, exp(—@ — (ug) H)*/4Dp)
cs,rt) = — X
wa 47Dt

(—zse U,/ 2p)
expl—i—7

kT, (a/ ) ) (25)

And finally, the ratio of (¥spanoy to ion mobility vs is

R (e e R

(26)

The analysis presented here can also be applied to a variety of
other cross sections by leveraging analytical or numerical expres-
sions, or both, for the potential and velocity fields.
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